Inhaltsverzeichnis

	-										
1	Rai	ndom Processes Seite 165	3								
	1.1	1.1 Kennwerte									
	1.2	statistischer Mittelwert	. 3								
	1 2	StationSwitzt Solto 167	. °								
	1.0		. 0								
		1.3.1 Streng-Stationarer Zufallsprozess (Strict-Sense Stationary(SSS))	. 3								
		1.3.2 Schwach stationäre Zufallsprozess (Wide-Sense Stationary (WSS))	. 3								
		1.3.3 Zeitmittelwert	. 3								
		134 Ergodizität	4								
	1 /	Venelation and California international control with the control of the second se									
	1.4	Korrelation und Spektraleieistungsdichte (Bei WSS) Seite 109	. 4								
		1.4.1 Autokorrelation	. 4								
		1.4.2 Spektraleleistungsdichte oder Leistungs-Spektrum Seite 170	. 4								
	1.5	Übertragung von X(t) über ein LTI-System Seite 171	4								
	1.6	Specialformen von Zufallenrozesen Sote 172	. 1								
	1.0	Spezialofinen von Zuransprozessen Seite 172	. 4								
		1.6.1 Gauss'scher Zufallsprozess Seite 172	. 4								
		1.6.2 weisses Rauschen Seite 173	. 5								
		1.6.3 Bandbeschränktes Rauschen Seite 174	. 5								
		1.6.4 Schmalbandiger Zufallsprozes Soite 174	5								
		1.0.4 Schinabandiger Zuransprozess Serie 174	. 5								
•	NT ·		-								
2	INO	ise in analog communication system Seite 202	5								
	2.1	1 Additive Geräusch und Signal-to-Noise Ratio Seite 202									
	2.2	Rauschen in Basisband-Systemen Seite 203	. 5								
	23	Rauschen in Amplitudenmodulierten Systemen Seite 204ff	6								
	2.0	2.2.1 (Green here and Detailed and Detail Detailed 2041	. 0 c								
		2.3.1 (Synchroner Detektor)DSB Systems Selice 205	. 0								
		2.3.2 (Synchroner Detektor)Am Systems Seite 206	. 6								
		2.3.3 Envelope Detection and Threshold Effect Seite 207	. 7								
	2.4	Rauschen in Winkelmodulierten Systemen Seite 208ff	. 7								
		2.4.1 Signal-dominiert $(C/N >> 1)$ Seite 200	8								
		2.441 Signal commute $(C/N) > 1$ Serie 200	. 0								
		$2.4.2 (3/N)_0$ in FM Sette 210	. 0								
		2.4.3 $(S/N)_o$ in FM Seite 211	. 8								
		2.4.4 Schwellwert Effekt für $(S/N) \ll 1$ Seite 211	. 8								
3	Lei	stungen Tabelle	9								
3	Lei	stungen Tabelle	9								
3 4	Leis	stungen Tabelle imaler Detektor Seite 226	9 9								
3 4	Leis Opi	stungen Tabelle imaler Detektor Seite 226 Binöres Übertragungssystem Seite 226	9 9 0								
3 4	Leis Opi 4.1	stungen Tabelle imaler Detektor Seite 226 Binäres Übertragungssystem Seite 226	9 9 . 9								
3 4	Leis Opi 4.1 4.2	stungen Tabelle imaler Detektor Seite 226 Binäres Übertragungssystem Seite 226	9 9 . 9 . 9								
3 4	Leis Opi 4.1 4.2	stungen Tabelle imaler Detektor Seite 226 Binäres Übertragungssystem Seite 226 Fehler-Wahrscheindlichkeit und maximum Likelihood Detector Seite 227 4.2.1 Bitfehler-Wahrscheindlichkeit Seite 227	9 . 9 . 9 . 9								
3 4	Leis Opi 4.1 4.2	stungen Tabelle imaler Detektor Seite 226 Binäres Übertragungssystem Seite 226 Fehler-Wahrscheindlichkeit und maximum Likelihood Detector Seite 227 4.2.1 Bitfehler-Wahrscheindlichkeit Seite 227 4.2.2 Maximum Likelihood Detector Seite 227	9 . 9 . 9 . 9 . 9 . 9								
3 4	Leis Opi 4.1 4.2	stungen Tabelle imaler Detektor Seite 226 Binäres Übertragungssystem Seite 226 Fehler-Wahrscheindlichkeit und maximum Likelihood Detector Seite 227 4.2.1 Bitfehler-Wahrscheindlichkeit Seite 227 4.2.2 Maximum Likelihood Detector Seite 227 4.2.3 Fehler-Wahrscheindlichkeit mit Gauss'schem Bauschen Seite 228	9 . 9 . 9 . 9 . 9 . 9 . 9								
3 4	Leis Opi 4.1 4.2	stungen Tabelle imaler Detektor Seite 226 Binäres Übertragungssystem Seite 226 Fehler-Wahrscheindlichkeit und maximum Likelihood Detector Seite 227 4.2.1 Bitfehler-Wahrscheindlichkeit Seite 227 4.2.2 Maximum Likelihood Detector Seite 227 4.2.3 Fehler-Wahrscheindlichkeit mit Gauss'schem Rauschen Seite 228 Ontimum Detecting Seite 220	9 9 9 9 9 9 9 9 11								
3 4	Leis Opi 4.1 4.2	stungen Tabelle imaler Detektor Seite 226 Binäres Übertragungssystem Seite 226 Fehler-Wahrscheindlichkeit und maximum Likelihood Detector Seite 227 4.2.1 Bitfehler-Wahrscheindlichkeit Seite 227 4.2.2 Maximum Likelihood Detector Seite 227 4.2.3 Fehler-Wahrscheindlichkeit mit Gauss'schem Rauschen Seite 228 Optimum Detection Seite 229	9 . 9 . 9 . 9 . 9 . 9 . 11 . 11								
3 4	Leis Opi 4.1 4.2 4.3	stungen Tabelle imaler Detektor Seite 226 Binäres Übertragungssystem Seite 226 Fehler-Wahrscheindlichkeit und maximum Likelihood Detector Seite 227 4.2.1 Bitfehler-Wahrscheindlichkeit Seite 227 4.2.2 Maximum Likelihood Detector Seite 227 4.2.3 Fehler-Wahrscheindlichkeit mit Gauss'schem Rauschen Seite 228 Optimum Detection Seite 229 4.3.1 The Matched Filter Seite 229	9 9 9 9 9 9 9 9 11 11 11								
3	Leis Opi 4.1 4.2 4.3	stungen Tabelle imaler Detektor Seite 226 Binäres Übertragungssystem Seite 226 Fehler-Wahrscheindlichkeit und maximum Likelihood Detector Seite 227 4.2.1 Bitfehler-Wahrscheindlichkeit Seite 227 4.2.2 Maximum Likelihood Detector Seite 227 4.2.3 Fehler-Wahrscheindlichkeit mit Gauss'schem Rauschen Seite 228 Optimum Detection Seite 229 4.3.1 The Matched Filter Seite 229 4.3.2 Correlator Seite 230	9 9 9 9 9 9 9 9 11 11 11 11 11								
3	Leis Opi 4.1 4.2 4.3	stungen Tabelle imaler Detektor Seite 226 Binäres Übertragungssystem Seite 226 Fehler-Wahrscheindlichkeit und maximum Likelihood Detector Seite 227 4.2.1 Bitfehler-Wahrscheindlichkeit Seite 227 4.2.2 Maximum Likelihood Detector Seite 227 4.2.3 Fehler-Wahrscheindlichkeit mit Gauss'schem Rauschen Seite 228 Optimum Detection Seite 229 4.3.1 The Matched Filter Seite 229 4.3.2 Correlator Seite 230 4.3.3 Optimum Detection Seite 230	9 9 9 9 9 9 9 9 11 11 11 11 11 11								
3	Leis Opi 4.1 4.2 4.3	stungen Tabelle imaler Detektor Seite 226 Binäres Übertragungssystem Seite 226 Fehler-Wahrscheindlichkeit und maximum Likelihood Detector Seite 227 4.2.1 Bitfehler-Wahrscheindlichkeit Seite 227 4.2.2 Maximum Likelihood Detector Seite 227 4.2.3 Fehler-Wahrscheindlichkeit mit Gauss'schem Rauschen Seite 228 0ptimum Detection Seite 229 4.3.1 The Matched Filter Seite 229 4.3.2 Correlator Seite 230 4.3.3 Optimum Detection Seite 230 4.3.4 einige Beispiele von Fehler WSK's P. Seite 231	9 9 9 9 9 9 9 9 9 11 11 11 11 11 11								
34	Leis Opi 4.1 4.2 4.3	stungen Tabelleimaler Detektor Seite 226Binäres Übertragungssystem Seite 226Fehler-Wahrscheindlichkeit und maximum Likelihood Detector Seite 2274.2.1Bitfehler-Wahrscheindlichkeit Seite 2274.2.2Maximum Likelihood Detector Seite 2274.2.3Fehler-Wahrscheindlichkeit mit Gauss'schem Rauschen Seite 228Optimum Detection Seite 2294.3.1The Matched Filter Seite 2294.3.2Correlator Seite 2304.3.3Optimum Detection Seite 2304.3.4einige Beispiele von Fehler-WSK's P_e Seite 231	9 9 9 9 9 9 11 11 11 11 11 11 11 12								
3 4	Leis Opi 4.1 4.2 4.3	stungen Tabelle imaler Detektor Seite 226 Binäres Übertragungssystem Seite 226 Fehler-Wahrscheindlichkeit und maximum Likelihood Detector Seite 227 4.2.1 Bitfehler-Wahrscheindlichkeit Seite 227 4.2.2 Maximum Likelihood Detector Seite 227 4.2.3 Fehler-Wahrscheindlichkeit mit Gauss'schem Rauschen Seite 228 Optimum Detection Seite 229 4.3.1 The Matched Filter Seite 229 4.3.2 Correlator Seite 230 4.3.3 Optimum Detection Seite 230 4.3.4 einige Beispiele von Fehler-WSK's P_e Seite 231	9 9 9 9 9 9 9 9 11 11 11 11 11 11 12								
3 4 5	Leis Opi 4.1 4.2 4.3	stungen Tabelleimaler Detektor Seite 226Binäres Übertragungssystem Seite 226Fehler-Wahrscheindlichkeit und maximum Likelihood Detector Seite 2274.2.1Bitfehler-Wahrscheindlichkeit Seite 2274.2.2Maximum Likelihood Detector Seite 2274.2.3Fehler-Wahrscheindlichkeit mit Gauss'schem Rauschen Seite 228Optimum Detection Seite 2294.3.1The Matched Filter Seite 2294.3.2Correlator Seite 2304.3.3Optimum Detection Seite 2304.3.4einige Beispiele von Fehler-WSK's P_e Seite 231comationstheorie und Quellenkodierung Seite 245	9 9 9 9 9 9 11 11 11 11 11 11 12 12								
3 4 5	Leis Opi 4.1 4.2 4.3 Infi 5.1	stungen Tabelleimaler Detektor Seite 226Binäres Übertragungssystem Seite 226Fehler-Wahrscheindlichkeit und maximum Likelihood Detector Seite 2274.2.1Bitfehler-Wahrscheindlichkeit Seite 2274.2.2Maximum Likelihood Detector Seite 2274.2.3Fehler-Wahrscheindlichkeit mit Gauss'schem Rauschen Seite 228Optimum Detection Seite 2294.3.1The Matched Filter Seite 2294.3.2Correlator Seite 2304.3.3Optimum Detection Seite 2304.3.4einige Beispiele von Fehler-WSK's P_e Seite 231romationstheorie und Quellenkodierung Seite 245Information Content of a Symbol Seite 246	9 9 9 9 9 9 9 9 11 11 11 11 11 11 12 12 12 12								
3 4 5	Leis Opi 4.1 4.2 4.3 Infi 5.1 5.2	stungen Tabelleimaler Detektor Seite 226Binäres Übertragungssystem Seite 226Fehler-Wahrscheindlichkeit und maximum Likelihood Detector Seite 227 $4.2.1$ Bitfehler-Wahrscheindlichkeit Seite 227 $4.2.2$ Maximum Likelihood Detector Seite 227 $4.2.3$ Fehler-Wahrscheindlichkeit mit Gauss'schem Rauschen Seite 228 0 ptimum Detection Seite 229 $4.3.1$ The Matched Filter Seite 229 $4.3.2$ Correlator Seite 230 $4.3.3$ Optimum Detection Seite 230 $4.3.4$ einige Beispiele von Fehler-WSK's P_e Seite 231romationstheorie und Quellenkodierung Seite 245Information Content of a Symbol Seite 246Entropie (Mittlerer Informationsgehalt) Seite 246	9 9 9 9 9 9 9 11 11 11 11 11 11 11 12 12 12 12 12 12								
3 4 5	Leis Opi 4.1 4.2 4.3 Infi 5.1 5.2 5.3	stungen Tabelle imaler Detektor Seite 226 Binäres Übertragungssystem Seite 226 Fehler-Wahrscheindlichkeit und maximum Likelihood Detector Seite 227 4.2.1 Bitfehler-Wahrscheindlichkeit Seite 227 4.2.2 Maximum Likelihood Detector Seite 227 4.2.3 Fehler-Wahrscheindlichkeit mit Gauss'schem Rauschen Seite 228 Optimum Detection Seite 229 4.3.1 The Matched Filter Seite 229 4.3.2 Correlator Seite 230 4.3.3 Optimum Detection Seite 230 4.3.4 einige Beispiele von Fehler-WSK's P_e Seite 231 romationstheorie und Quellenkodierung Seite 245 Information Content of a Symbol Seite 246 Entropie (Mittlerer Informationsgehalt) Seite 246 Diskreter gedächnisloser Kanal Seite 247	9 9 9 9 9 9 9 9 9 9 9 11 11 11 11 11 11								
3 4 5	Leis Opi 4.1 4.2 4.3 Infi 5.1 5.2 5.3 5.4	stungen Tabelleimaler Detektor Seite 226Binäres Übertragungssystem Seite 226Fehler-Wahrscheindlichkeit und maximum Likelihood Detector Seite 2274.2.1 Bitfehler-Wahrscheindlichkeit Seite 2274.2.2 Maximum Likelihood Detector Seite 2274.2.2 Maximum Likelihood Detector Seite 2274.2.3 Fehler-Wahrscheindlichkeit mit Gauss'schem Rauschen Seite 228Optimum Detection Seite 2294.3.1 The Matched Filter Seite 2294.3.2 Correlator Seite 2304.3.3 Optimum Detection Seite 2304.3.4 einige Beispiele von Fehler-WSK's P_e Seite 231comationstheorie und Quellenkodierung Seite 245Information Content of a Symbol Seite 246Entropie (Mittlerer Informationsgehalt) Seite 246Diskreter gedächnisloser Kanal Seite 247Lute 246	9 9 9 9 9 9 11 11 11 11 11 11 11 12 12 12 12 12 12 12 12 13								
3 4 5	Leis Opi 4.1 4.2 4.3 Lnft 5.1 5.2 5.3 5.4	stungen Tabelleimaler Detektor Seite 226Binäres Übertragungssystem Seite 226Fehler-Wahrscheindlichkeit und maximum Likelihood Detector Seite 2274.2.1 Bitfehler-Wahrscheindlichkeit Seite 2274.2.2 Maximum Likelihood Detector Seite 2274.2.2 Maximum Likelihood Detector Seite 2274.2.3 Fehler-Wahrscheindlichkeit mit Gauss'schem Rauschen Seite 228Optimum Detection Seite 2294.3.1 The Matched Filter Seite 2294.3.2 Correlator Seite 2304.3.3 Optimum Detection Seite 2304.3.4 einige Beispiele von Fehler-WSK's P_e Seite 231tomationstheorie und Quellenkodierung Seite 245Information Content of a Symbol Seite 246Diskreter gedächnisloser Kanal Seite 247Kanalkapazität Seite 251	9 9 9 9 9 9 9 9 9 9 9 11 11 11 11 11 11 1								
3 4 5	Leis Opi 4.1 4.2 4.3 4.3 Lnft 5.1 5.2 5.3 5.4 5.5	stungen Tabelleimaler Detektor Seite 226Binäres Übertragungssystem Seite 226Fehler-Wahrscheindlichkeit und maximum Likelihood Detector Seite 2274.2.1Bitfehler-Wahrscheindlichkeit Seite 2274.2.2Maximum Likelihood Detector Seite 2274.2.3Fehler-Wahrscheindlichkeit mit Gauss'schem Rauschen Seite 228Optimum Detection Seite 2294.3.1The Matched Filter Seite 2294.3.2Correlator Seite 2304.3.3Optimum Detection Seite 2304.3.4einige Beispiele von Fehler-WSK's P_e Seite 231romationstheorie und Quellenkodierung Seite 245Information Content of a Symbol Seite 246Entropie (Mittlerer Informationsgehalt) Seite 246Diskreter gedächnisloser Kanal Seite 247Kanalkapazität Seite 251Quellenkodierung Seite 253	9 9 9 9 9 9 9 9 9 9 9 11 11 11 11 11 11								
3 4 5	Leis Opi 4.1 4.2 4.3 4.3 Infi 5.1 5.2 5.3 5.4 5.5 5.6	stungen Tabelleimaler Detektor Seite 226Binäres Übertragungssystem Seite 226Fehler-Wahrscheindlichkeit und maximum Likelihood Detector Seite 2274.2.1Bitfehler-Wahrscheindlichkeit Seite 2274.2.2Maximum Likelihood Detector Seite 2274.2.3Fehler-Wahrscheindlichkeit mit Gauss'schem Rauschen Seite 228Optimum Detection Seite 2294.3.1The Matched Filter Seite 2294.3.2Correlator Seite 2304.3.3Optimum Detection Seite 2304.3.4einige Beispiele von Fehler-WSK's P_e Seite 231romationstheorie und Quellenkodierung Seite 245Information Content of a Symbol Seite 246Entropie (Mittlerer Informationsgehalt) Seite 246Diskreter gedächnisloser Kanal Seite 247Kanalkapazität Seite 251Quellenkodierung Seite 253Klassifizierung von Codes Seite 254	9 9 9 9 9 9 9 9 9 9 9 11 11 11 11 11 11								
3 4 5	Leis Opi 4.1 4.2 4.3 4.3 Infi 5.1 5.2 5.3 5.4 5.5 5.6 5.7	stungen Tabelle imaler Detektor Seite 226 Binäres Übertragungssystem Seite 226 Fehler-Wahrscheindlichkeit und maximum Likelihood Detector Seite 227 4.2.1 Bitfehler-Wahrscheindlichkeit Seite 227 4.2.2 Maximum Likelihood Detector Seite 227 4.2.3 Fehler-Wahrscheindlichkeit mit Gauss'schem Rauschen Seite 228 Optimum Detection Seite 229 4.3.1 The Matched Filter Seite 229 4.3.2 Correlator Seite 230 4.3.3 Optimum Detection Seite 230 4.3.4 einige Beispiele von Fehler-WSK's P_e Seite 245 Information Content of a Symbol Seite 246 Entropie (Mittlerer Informationsgehalt) Seite 246 Diskreter gedächnisloser Kanal Seite 247 Kanalkapazität Seite 251 Quellenkodierung Seite 253 Klassifizierung von Codes Seite 254 Kraft'sche Ungleichung Seite 255	9 9 9 9 9 9 9 9 9 9 9 11 11 11 11 11 11								
3 4 5	Leis Opi 4.1 4.2 4.3 4.3 Infi 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.0	stungen Tabelleimaler Detektor Seite 226Binäres Übertragungssystem Seite 226Fehler-Wahrscheindlichkeit und maximum Likelihood Detector Seite 2274.2.1Bitfehler-Wahrscheindlichkeit Seite 2274.2.2Maximum Likelihood Detector Seite 2274.2.3Fehler-Wahrscheindlichkeit mit Gauss'schem Rauschen Seite 228Optimum Detection Seite 2294.3.1The Matched Filter Seite 2294.3.2Correlator Seite 2304.3.3Optimum Detection Seite 2304.3.4einige Beispiele von Fehler-WSK's P_e Seite 231romationstheorie und Quellenkodierung Seite 245Information Content of a Symbol Seite 246Entropie (Mittlerer Informationsgehalt) Seite 246Diskreter gedächnisloser Kanal Seite 247Kanalkapazität Seite 251Quellenkodierung Seite 255Shamen Fano Codierung Seite 255Shamen Fano Codierung Seite 255	9 9 9 9 9 9 9 9 9 9 9 11 11 11 11 11 11								
3 4 5	Leis Opi 4.1 4.2 4.3 4.3 Infi 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.7	stungen Tabelleimaler Detektor Seite 226Binäres Übertragungssystem Seite 226Fehler-Wahrscheindlichkeit und maximum Likelihood Detector Seite 2274.2.1Bitfehler-Wahrscheindlichkeit Seite 2274.2.2Maximum Likelihood Detector Seite 2274.2.3Fehler-Wahrscheindlichkeit mit Gauss'schem Rauschen Seite 228Optimum Detection Seite 2294.3.1The Matched Filter Seite 2294.3.2Correlator Seite 2304.3.3Optimum Detection Seite 2304.3.4einige Beispiele von Fehler-WSK's P_e Seite 231romationstheorie und Quellenkodierung Seite 245Information Content of a Symbol Seite 246Diskreter gedächnisloser Kanal Seite 247Kanalkapazität Seite 251Quellenkodierung Seite 253Klassifizierung von Codes Seite 254Kraft'sche Ungleichung Seite 255Shannon-Fano Codierung Seite 255/256	9 9 9 9 9 9 9 9 9 9 9 9 9 11 11 11 11 11								
3 4 5	Leis Opi 4.1 4.2 4.3 4.3 Infi 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9	stungen Tabelleimaler Detektor Seite 226Binäres Übertragungssystem Seite 226Fehler-Wahrscheindlichkeit und maximum Likelihood Detector Seite 2274.2.1Bitfehler-Wahrscheindlichkeit Seite 2274.2.2Maximum Likelihood Detector Seite 2274.2.3Fehler-Wahrscheindlichkeit mit Gauss'schem Rauschen Seite 228Optimum Detection Seite 2294.3.1The Matched Filter Seite 2294.3.2Correlator Seite 2304.3.3Optimum Detection Seite 2304.3.4einige Beispiele von Fehler-WSK's P_e Seite 231comationstheorie und Quellenkodierung Seite 245Information Content of a Symbol Seite 246Entropie (Mittlerer Informationsgehalt) Seite 246Diskreter gedächnisloser Kanal Seite 247Kanalkapazität Seite 251Quellenkodierung Seite 253Klassifizierung von Codes Seite 254Kraft'sche Ungleichung Seite 255Shannon-Fano Codierung Seite 255Shannon-Fano Codierung Seite 255	9 . 9 . 9 . 9 . 11 . 11 . 11 . 11 . 11								
3 4 5	Leis Opi 4.1 4.2 4.3 4.3 Infi 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9	stungen Tabelle imaler Detektor Seite 226 Binäres Übertragungssystem Seite 226 Fehler-Wahrscheindlichkeit und maximum Likelihood Detector Seite 227 $4.2.1$ Bitfehler-Wahrscheindlichkeit Seite 227 $4.2.2$ Maximum Likelihood Detector Seite 227 $4.2.3$ Fehler-Wahrscheindlichkeit mit Gauss'schem Rauschen Seite 228 0 ptimum Detection Seite 229 $4.3.1$ The Matched Filter Seite 229 $4.3.2$ Correlator Seite 230 $4.3.3$ Optimum Detection Seite 230 $4.3.4$ einige Beispiele von Fehler-WSK's P_e Seite 231 romationstheorie und Quellenkodierung Seite 245 Information Content of a Symbol Seite 246 Entropie (Mittlerer Informationsgehalt) Seite 246 Diskreter gedächnisloser Kanal Seite 247 Kanalkapazität Seite 251 Quellenkodierung Seite 255 Shannon-Fano Codierung Seite 255 Shannon-Fano Codierung Seite 255	9 9 9 9 9 9 9 9 9 9 9 11 11 11 11 11 11								
3 4 5 6	Leis Opi 4.1 4.2 4.3 4.3 Infi 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 Err	stungen Tabelle imaler Detektor Seite 226 Binäres Übertragungssystem Seite 226 Fehler-Wahrscheindlichkeit und maximum Likelihood Detector Seite 227 4.2.1 Bitfehler-Wahrscheindlichkeit Seite 227 4.2.2 Maximum Likelihood Detector Seite 227 4.2.3 Fehler-Wahrscheindlichkeit mit Gauss'schem Rauschen Seite 228 0ptimum Detection Seite 229	9 9 9 9 9 9 9 11 11 11 11 11								
3 4 5 6	Leis Opi 4.1 4.2 4.3 4.3 Infi 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 Err 6.1	stungen Tabelleimaler Detektor Seite 226Binäres Übertragungssystem Seite 226Fehler-Wahrscheindlichkeit und maximum Likelihood Detector Seite 2274.2.1 Bitfehler-Wahrscheindlichkeit Seite 2274.2.2 Maximum Likelihood Detector Seite 2274.2.3 Fehler-Wahrscheindlichkeit mit Gauss'schem Rauschen Seite 228Optimum Detection Seite 2294.3.1 The Matched Filter Seite 2294.3.2 Correlator Seite 2304.3.3 Optimum Detection Seite 2304.3.4 einige Beispiele von Fehler-WSK's P_e Seite 231romationstheorie und Quellenkodierung Seite 245Information Content of a Symbol Seite 246Entropie (Mittlerer Informationsgehalt) Seite 246Diskreter gedächnisloser Kanal Seite 247Kanalkapazität Seite 251Quellenkodierung Seite 255Shannon-Fano Codierung Seite 255Shannon-Fano Codierung Seite 255Shannon: Kanalvodierung Seite 282	9 9 9 9 9 11 11 11 11 11 11 11 11 12 12 12 12 12 12 12 13 13 14 15 15 16 16 16 16 16 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17								
3 4 5 6	Leis Opi 4.1 4.2 4.3 4.3 4.3 Infi 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 Err 6.1 6.2	stungen Tabelleimaler Detektor Seite 226Binäres Übertragungssystem Seite 226Fehler-Wahrscheindlichkeit und maximum Likelihood Detector Seite 2274.2.1Bitfehler-Wahrscheindlichkeit Seite 2274.2.3Fehler-Wahrscheindlichkeit mit Gauss'schem Rauschen Seite 228Optimum Detection Seite 2294.3.1The Matched Filter Seite 2294.3.2Correlator Seite 2304.3.3Optimum Detection Seite 2304.3.4einige Beispiele von Fehler-WSK's P_e Seite 231entropie (Mittlerer Informationsgehalt) Seite 246Diskreter gedächnisloser Kanal Seite 247Kanalkapazität Seite 251Quellenkodierung Seite 246Diskreter gedächnisloser Kanal Seite 254Kraft'sche Ungleichung Seite 255Shannon-Fano Codierung Seite 255Shannon-Fano Codierung Seite 282Shannon: Kanalvodierungstheorem Seite 282Blockoodes Seite 283	9 9 9 9 9 9 9 9 11 11 11 11 11 11 11 11								
3 4 5 6	Leis Opi 4.1 4.2 4.3 4.3 4.3 Infi 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 Err 6.1 6.2 6.3	stungen Tabelleimaler Detektor Seite 226Binäres Übertragungssystem Seite 226Fehler-Wahrscheindlichkeit und maximum Likelihood Detector Seite 2274.2.1Bitfehler-Wahrscheindlichkeit Seite 2274.2.2Maximum Likelihood Detector Seite 2274.2.3Fehler-Wahrscheindlichkeit mit Gauss'schem Rauschen Seite 228Optimum Detection Seite 2294.3.1The Matched Filter Seite 2294.3.2Correlator Seite 2304.3.3Optimum Detection Seite 2304.3.4einige Beispiele von Fehler-WSK's P_e Seite 231romationstheorie und Quellenkodierung Seite 245Information Content of a Symbol Seite 246Entropie (Mittlerer Informationsgehalt) Seite 246Diskreter gedächnisloser Kanal Seite 251Quellenkodierung Seite 253Klassifizierung von Codes Seite 254Kraft'sche Ungleichung Seite 255Shannon-Fano Codierung Seite 255Shannon-Fano Codierung Seite 255Shannon-Fano Codierung Seite 255Shannon-Fano Codierung Seite 255Shannon: Kanalvodierungstheorem Seite 282Blockcodes Seite 283Linearer Blockcode Seite 283Linearer Blockcode Seite 283	9 9 9 9 9 9 9 9 9 11 11 11 11 11 11 11 1								

	6.3.1	Systematischer Code (Seite 310 (290))	3
	6.3.2	Hamming-Gewicht, Hamming-Distanz Seite 283 16	3
	6.3.3	Minimale Hamming-Distanz Siete 284	3
	6.3.4	Fehler erkennung und korrektur Seie 284 17	7
	6.3.5	Generatormatrix G Seite 285	7
	6.3.6	Auswertung des Fehlersyndroms Seite 286	7
	6.3.7	Hamming Schranke Seite 285	3
6.4	Zyklisc	he Blockcode Seite 286	3
	6.4.1	Fundamentales Theorem für zyklische Codes Seite 287	3

1 Random Processes Seite 165

1.1 Kennwerte

Verteilungsfunktion (1.Dim): $F_X(x_1;t_1) = P\{X(t_1) \le x_1\} F_X(x_1, x_2; t_1, t_2) = P\{X(t_1) \le x_1; X(t_2) \le x_2\}$ Dichtefunktion (1.Dim): $f_X(x_1; t_1) = \frac{\partial F_X(x_1; t_1)}{\partial x_1}$ Verteilungsfunktion (2.Dim): $F_X(x_1, x_2; t_1, t_2) = P\{X(t_1) \le x_1; X(t_2) \le x_2\}$ Dichtefunktion (2.Dim): $f_X(x_1, x_2; t_1, t_2) = \frac{\partial^2 F_X(x_1, x_2; t_1, t_2)}{\partial x_1 \partial x_2}$

1.2 statistischer Mittelwert

Erwartungswert: $\mu_X(t) = E[X(t)] = \int_{-\infty}^{\infty} x f_X(x;t) dx$

Autokorrelation: $R_{XX}(t_1, t_2) = E[X(t_1)X(t_2)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x_1 x_2 \xrightarrow{\text{Amplitudendichtefkt.}}_{f_X(x_1, x_2; t_1, t_2)} dx_1 dx_2$

Autokovarianz: Korrelieren die zwei Signale nicht \Rightarrow Autokovarianz $\stackrel{!}{=} 0$ $C_{XX}(t_1, t_2) = E\{[X(t_1) - \mu_X(t_1)][X(t_2) - \mu_X(t_2)] = R_{XX}(t_1, t_2) - \mu_X(t_1)\mu_X(t_2)$

1.3 Stationärität Seite 167

1.3.1 Streng-Stationärer Zufallsprozess (Strict-Sense Stationary(SSS))

Statische Eigenschaften des Prozesses sind unabhängig von einer beliebigen Zeitverschiebung c: $f_X(x_1, x_2, \ldots, x_n; t_1, t_2, \ldots, t_n)$ $f_X(x_1, x_2, \ldots, x_n; t_1 + c, t_2 + c, \ldots, t_n + c)$ Wichtige Eigenschaften

- $E[X(t)] = \mu_X$
- $R_{XX}(t_1, t_2) = R_X(\tau), \operatorname{mit} \tau = t_2 t_1$
- $C_{XX}(t_1, t_2) = R_X(\tau) \mu_X^2$
- Der Zusammenhang von X(t) und $X(t + \tau)$ hängt nicht von der Zeit t sondern nur vor der Zeitdifferenz τ ab.
- Jeder streng stationäre Prozess ist auch schwach stationär

1.3.2 Schwach stationäre Zufallsprozess (Wide-Sense Stationary (WSS))

Ein Zufallsprozess ist schwachstationär falls ein Mittelwert konstant ist und seine Autokorrelation nur von der Zeitdifferenz τ abhängig ist. Wichtige Eigenschaften

- $E[X(t)] = \mu_X$
- $R_{XX}(t_1, t_2) = R_X(\tau), \operatorname{mit} \tau = t_2 t_1$
- $C_{XX}(t_1, t_2) = R_X(\tau) \mu_X^2 = C_{XX}(\tau)$
- Jeder streng stationäre Prozess ist auch schwach stationär

1.3.3 Zeitmittelwert

$$\overline{x} = \sum_{k=0}^{n} p_k(x) \cdot z_k$$

1.3.4 Ergodizität

Ein Prozess ist Ergodisch falls die zeitlichen Mittelwerte gleich denen der Schar sind. Falls Prozesse ergodisch sind gilt folgendes:

DC-Level $E[X(t)] = \overline{x} = \langle x(t) \rangle$ **DC-Leistung** $E[X(t)]^2 = (\overline{x})^2 = \langle x(t) \rangle^2$ **Gesammtleistung** $E[X^2(t)] = R_{XX}(0) = \overline{x}^2 = \langle x^2(t) \rangle$ **AC-Leistung** $\sigma_X^2(t) = \langle x^2(t) \rangle - \langle x(t) \rangle^2$ **RMS-Level Effektivwert des AC-Signals** $\sigma_X(t) = \overline{\sigma}_X$

1.4 Korrelation und Spektraleleistungsdichte (Bei WSS) Seite 169

1.4.1 Autokorrelation

 $R_{XX}(\tau) = E[X(t)X(t+\tau)]$

- $R_{XX}(-\tau) = R_{XX}(\tau)$
- $|R_{XX}(\tau)| \le R_{XX}(0)$
- $R_{XX}(0) = E[X^2(t)]$

1.4.2 Spektraleleistungsdichte oder Leistungs-Spektrum Seite 170

spektrale Leistungsdichte Leistung eines infinitesimal kleinem Freuquenzband

Leistungsdichtespektrum Summe aller spektralen Leistungsdichten auf getragen über der Frequenzachse

 $S_{XX}(\omega) = \int_{-\infty}^{\infty} R_{XX}(\tau) e^{-j\omega\tau} \text{ (Fouriertransformation)}$ $\Rightarrow R_{XX}(\tau) = \frac{1}{2\pi} \int_{-\infty}^{\infty} S_{XX}(\omega) e^{j\omega\tau}$

1.5 Übertragung von X(t) über ein LTI-System Seite 171

 $\mu_Y(t) = h(t) \ast \mu_X(t)$ bei WSS $\mu_Y(t) = H(0) \ast \mu_X$

1.6 Spezialformen von Zufallsprozessen Seite 172

1.6.1 Gauss'scher Zufallsprozess Seite 172

Allgemein Zu jedem Zeitpunkt t_i ist die Zufallsvariable $X(t_i)$ gaussverteilt

 $\mu_i = E[X(t_i)] i = 1, \dots, n$ und $R_{XX}(t_i, t_j) = E[X(t_i)X(t_j)] i.j = 1, \dots, n$ charakterisieren einen gauss'schen Zufallsprozess vollständig

Eigenschaften

Sind $X(t_i)$ und $X(t_j)$ unkorreliert $(C_{XX}(t_i, t_j) \stackrel{!}{=} 0$ falls, $i \neq j$), so sind die Zufallsvariablen auch unabhängig voneinander, d.h: $f_{XX}(x_i, x_j; t_i, t_j) = f_X(x_i; t_i) \cdot f_X(x_j; t_j)$ Ist ein gauss'scher Prozess WSS ist er zugleich auch SSS

Ein gauss'scher Zufallsprozess X(t)ist am Ausgang eines LTI als Y(t) wiederum gaussisch

 ${\bf Beispiel}\,$ thermisches Rauschen von Widerständen

2.Dim Fall (gauss'sche Verbunddichte)
$$f_X(x_1, x_2; t_1, t_2) = \frac{1}{2\pi\sigma_{x_1}\sigma_{x_2}} \cdot e^{-\frac{(x_1 - \mu x_1)^2}{2\sigma_{x_1}^2}} \cdot e^{-\frac{(x_2 - \mu x_2)^2}{2\sigma_{x_2}^2}}$$

1.6.2 weisses Rauschen Seite 173

Allgemein gleichmässige Leistungsdichte für alle Frequenzanteile: $S_{XX}(\omega) = \frac{\eta}{2}$ und somit $R_{XX}(\tau) = \frac{\eta}{2}\delta(\tau)$ **Bilder** Schaum seite 174 oben

1.6.3 Bandbeschränktes Rauschen Seite 174

Allgemein Es muss $S_{XX}(\omega) = \begin{cases} \frac{\eta}{2}, & \text{falls } |\omega| \le \omega_B \\ 0, & \text{falls } |\omega| > \omega_B \end{cases}$ gelten

Bilder Schaum seite 174 mitte

1.6.4 Schmalbandiger Zufallsprozess Seite 174

Allgemein Bandbeschränktes weisses Rauschen mit sehr kleiner Bandbreite 2B(f-Achse) bzw. 2W(ω -Achse), werteilt um $\pm \omega_c$

Messung im Zeitbereich Sinusförmiges Signal mit zufälliger Amplitude und Phase

$$\begin{split} X(t) &= V(t) \cdot \cos[\omega_c t + \Phi(t)] \quad \text{wobei} \begin{cases} V(t), & \text{Enveloppen-Funktion} \\ \Phi(t), & \text{Phasenfunktion} \end{cases} \\ X(t) &= X_c(t) \cos(\omega_c(t)) - X_s(t) \sin(\omega_c(t)) \\ X_c(t) &= V(t) \cos(\Phi(t)); \text{ gleichphasiger Anteil} \\ X_c(t) &= V(t) \sin(\Phi(t)); \text{ Quadratur Anteil} \\ V(t) &= \sqrt{X_c^2(t) + X_s^2(t)}; \text{ Enveloppenfunktion} \\ \Phi(t) &= \arctan \frac{X_s(t)}{X_c(t)}; \text{ Phasenfunktion} \end{split}$$

Eigenschaften

$$\begin{split} S_{X_c}(\omega) &= S_{X_s}(\omega) = \begin{cases} S_{XX}(\omega - \omega_c) + S_{XX}(\omega + \omega_c), & |\omega| \leq W\\ 0, & |\omega| > W \end{cases} \\ \mu_{X_c} &= \mu_{X_s} = \mu_X = 0\\ \sigma_{X_c}^2 &= \sigma_{X_s}^2 = \sigma_X^2\\ E[X_c(t)X_s(t)] &= 0 \text{ (unkorreliert und orthogonal)}\\ \text{Ist } X(t) \text{ ein Gauss-Prozess, sind auch } X_c(t) \text{ und } X_s(t) \text{ gaussisch.}\\ \text{Zudem gilt dann:} \begin{cases} V(t), & \text{Rayleigh-verteilt zu jedem Zeitpunkt } t\\ \Phi(t), & \text{gleichverteilt } (0 \dots 2\pi) \text{ zu jedem Zeitpunkt } t \end{cases} \end{split}$$

2 Noise in analog communication system Seite 202

2.1 Additive Geräusch und Signal-to-Noise Ratio Seite 202

Vorraussetzungen für eine einfache Berechnung (gauss'scher Kanal):

- n(t) ist weisses gauss'sches Rauschen mit $S_{nn}(\omega) = \frac{\eta}{2}$

- n(t) ist mittelwertfrei: E[n] = 0

- n(t) ist mit X(t) unkorreliert: $E[X \cdot n] = E[X] \cdot E[n] = E[X] \cdot 0 = 0$

wodurch für $E[Y_o^2]$ gilt: - $E[(X_o + n_o)^2] = E[X_o^2] + E[2 \cdot X_o \cdot n_o] + E[n_o^2] = S_o + n_o$ Somit ist der Signal/Geräusch-Abstand SNR: $SNR = \frac{S_o}{N_o} = \frac{E[X_o^2]}{E[n_o^2]}$

2.2 Rauschen in Basisband-Systemen Seite 203

Vorraussetzungen für eine einfache Berechnung:

- X(t) ist mittelwertfrei: E[X] = 0

- X(t) ist stationär und ergodisch: $\langle x_{\lambda}(t) \rangle = E[X] = 0$ (für jedes $x_{\lambda}(t)$)

- X(t) ist bandbeschränkt: $S_{xx}(\omega) = 0$ für $\omega > W$

- LPF ist ideal und hat eine Bandbreite B mit: $2\pi \cdot B = W$ - der Kanal ist verzerrungsfrei: $X_o(t) = X(t - t_d)$ (t_d verzögerung des Systems)

Signalleistung nach Empfang: $S_o = E[X_o^2(t)] = E[X^2(t-t_d)] = \frac{1}{2\pi} \int_{-W}^{+W} S_{XX}(\omega) d\omega = S_X = S_i$ Rauschleistung nach Empfang: $N_o = E[n_o^2(t)] = \frac{1}{2\pi} \int_{-W}^{+W} S_{nn}(\omega) d\omega = \frac{1}{2\pi} \int_{-W}^{+W} \frac{\eta}{2} d\omega = \eta \frac{W}{2\pi} = \eta B$ Signal-Geräusch-Verhältnis nach Empfang: $\left(\frac{S}{N}\right)_o = \frac{S_o}{N_o} = \frac{S_i}{\eta B} = \gamma$

2.3 Rauschen in Amplitudenmodulierten Systemen Seite 204ff

Eingangs-Signal: $Y_i(t) = X_c(t) + n_i(t)$ Eingangs-Rauschsignal: $n_i(t) = n_c(t)\cos(\omega_c t) - n_s\sin(\omega_c t)$ Eingangs-Rauschleistung: $E[n_c^2(t)] = E[n_s^2(t)] = E[n_i^2(t)] = 2\eta B$

2.3.1 (Synchroner Detektor)DSB Systems Seite 205

Übertragungs Signal X_c : $X_c(t) = A_c X(t) \cos(\omega_c t)$ Demodulator Eingangs-Signal: $Y_i(t) = A_c X(t) \cos(\omega_c t) + n_i(t) = [A_c X(t) + n_c(t)] \cos(\omega_c t) - n_s(t) \sin(\omega_c t)$ Demodulator Eingangs-Signal-Leistung: $\left(\frac{S}{N}\right)_i = \frac{S_i}{N_i} = \frac{S_i}{2\eta B}$ Demodulator Ausgangs-Signal: $Y_o(t) = A_c X(t) + n_c(t) = X_o(t) + n_o(t)$ Demodulator Ausgangs-Signal-Leistung: $S_o = E[X_o^2(t)] = E[A_c^2 X^2(t)] = A_c^2 E[X^2(t)] = A_c^2 S_X$ Demodulator Ausgangs-Rausch-Leistung: $N_o = E[n_o^2(t)] = E[n_c^2(t)] = E[n_i^2(t)] = 2\eta B$ Demodulator Ausgangs-SNR: $\left(\frac{S}{N}\right)_o = \frac{S_o}{N_o} = \frac{A_c^2 S_X}{2\eta B}$ ist gliech gut wie die Basisbandübertragung Detektor-Gewinn (Mass für die "Effizienz" des Demodulators): $\alpha_d = \frac{(S/N)_o}{(S/N)_i} = \frac{S_i/(\eta B)}{S_i/(2\eta B)} = 2$

2.3.2 (Synchroner Detektor)Am Systems Seite 206

$$\begin{split} \ddot{\mathbf{U}} \mathbf{bertragungs Signal} \ X_c \colon X_c(t) &= A_c[1 + \mu X(t)] \cos(\omega_c t) \\ \mathbf{Demodulator Eingangs-Signal:} \ Y_i(t) &= A_c(1 + \mu X(t)) \cos(\omega_c t) + n_i(t) \text{ mit } \mu \leq 1 \text{ und } |X(t)| \leq 1 \\ \mathbf{Demod. Eingangs-Signal-Leistung:} \ S_i &= \frac{1}{2} E[A_c^2(1 + \mu^2 X^2(t))] = \frac{1}{2} E[A_c^2(1 + \mu X(t))^2] = \frac{1}{2} A_c^2(1 + \mu^2 S_X) \\ \mathbf{Demodulator Ausgangs-Signal:} \ Y_o(t) &= A_c \mu X(t) + n_c(t) = X_o(t) + n_o(t) \\ \mathbf{Demodulator Ausgangs-Signal-Leistung:} \ S_o &= A_c^2 \mu^2 S_X = \frac{2\mu^2 S_X}{1 + \mu^2 S_X} S_i \\ \mathbf{Demodulator Ausgangs-Rausch-Leistung:} \ N_o &= E[n_o^2(t)] = E[n_c^2(t)] = 2\eta B \\ \mathbf{Demodulator Ausgangs-SNR:} \ \left(\frac{S}{N}\right)_o &= \frac{S_o}{N_o} = \frac{\mu^2 S_X}{1 + \mu^2 S_X} \left(\frac{S_i}{\eta B}\right) = \frac{\mu^2 S_X}{1 + \mu^2 S_x} \gamma \Rightarrow \left(\frac{S}{N}\right)_o \leq \frac{\gamma}{2} \text{ mind. 3dB} \\ \text{ schlechter als Baisbandübertragung} \end{split}$$

Detektor-Gewinn (Mass für die "Effizienz" des Demodulators): $\alpha_d = \frac{(S/N)_o}{(S/N)_i} = \frac{2\mu^2 S_X}{1 - \mu^2 S_X} \le 1$

Übertragungs Signal X_c : $X_c(t) = A_c[1 + \mu X(t)] \cos(\omega_c t)$ Demodulator Eingangs-Signal: $Y_i(t) = A_c(1 + \mu X(t)) \cos(\omega_c t) + n_i(t) = V(t) \cos(\omega_c t - \phi(t))$

Large-SNR (Signaldominanz $(S/N)_i >> 1$) Seite 207

- Demodulator Ausgangs-Signal: $Y_o(t) = A_c \mu X(t) + n_c(t) = X_o(t) + n_o(t)$

- Demodulator Ausgangs-SNR: $\left(\frac{S}{N}\right)_o = \frac{S_o}{N_o} = \frac{\mu^2 S_X}{1 + \mu^2 S_x} \gamma$ performance identical to synchronous detector

Small-SNR (Geräuschdominanz $(S/N)_i \ll 1$) Seite 207

- Envelope (Signal-Approximation): $V(t) \approx V_n(t) + A_c[1 + \mu X(t)] \cos(\phi_n(t))$
 - Amplitude wird dominiert von $V_n(t)$
 - Nutzsignal X(t) wird zusätzlich moduliert mit zufälligem $\phi(t)$
 - X(t) ist nur noch in stark deformierter Form vorhanden
- Allgemein: Der Übergang zwischen ausreichender Übertragungsqualität und unbrauchbarer Übertragung beginnt ab $(S/N)_i$ 10 dB und erfolgt sehr schnell: "Schwellwert Effekt"

2.4 Rauschen in Winkelmodulierten Systemen Seite 208ff

$$\begin{array}{c|c} X_{c}(t) + n(t) & Y_{i}(t) & Discriminator & LPF \\ \hline \\ BPF & Limiter & S_{i}, N_{i} & Discriminator & LPF \\ \hline \\ S_{o}, N_{o} & \end{array}$$

 $\mathbf{\ddot{U}bertragungs-Signal:} \ X_{c}(t) = A_{c}\cos(\omega_{c}t + \phi(t)) \text{ mit } \phi(t) = \begin{cases} k_{p}X(t) & \text{ for PM} \\ k_{f}\int_{-\infty}^{t}X(\tau) \, d\tau & \text{ for FM} \end{cases}$

Rauschsingal am Eingang: $n_i(t) = v_n(t)\cos(\omega_c t + \phi_n(t))$ mit $N_i = 2(D+1)B_m \cdot \eta$

Hubverhältnis D: $D = \frac{\Delta f}{B_m} = \frac{\Delta \omega}{W_m}$

Eingangs-SNR (CNR (Carrier-to-noise Ratio)): $\left(\frac{S}{N}\right)_i = \frac{A_c^2}{2\eta B_T} = \frac{A_c^2}{4(D+1)B_m\eta} \neq f(X(t))$

Eingangs-Signal: $Y_i(t) = V(t)\cos(\omega_c t + \theta(t))$

Eingangs-Amplitude:
$$V(t) = \sqrt{(A_c \cos(\phi) + v_n(t) \cos(\phi_n(t)))^2 + (A_c \sin(\phi) + v_n(t) \sin(\phi_n(t)))^2}$$

Argument / Winkel: $\theta = tan^{-1} \frac{A_c \sin(\phi) + v_n(t) \sin(\phi_n(t))}{A_c \cos(\phi) + v_n(t) \cos(\phi_n(t))}$

Interpretation: Der Limiter unterdrückt sämtliche Amplitudenschwankungen von V(t). Signalanteile (ebenso Rauschen) sind nur in der Phase enthalten. SNR wird daher nur von der Phase beeinflusst.

Ausgangs-Signal:
$$Y_o = \begin{cases} \theta(t) & \text{for PM} \\ \frac{d\theta(t)}{dt} & \text{for FM} \end{cases}$$

2.4.1 Signal-dominiert (C/N >> 1) Seite 209

$$\textbf{Ausgangs-Signal:} \ Y_o = \begin{cases} \theta(t) = k_p X(t) + \frac{n_s(t)}{A_c} & \text{for PM} \\ \frac{d\theta(t)}{dt} = k_f X(t) + \frac{n_s'(t)}{A_c} & \text{for FM} \end{cases}$$

2.4.2 $(S/N)_o$ in PM Seite 210

Ausgangs-Signal-Leistung: $S_o = E[k_p^2 X^2(t)] = k_p^2 S_X$ Ausgangs-Rausch-Leistung: $N_o = E[\frac{1}{A_c^2}n_s^2(t)] = \frac{1}{A_c^2}2\eta B$

Ausgangs-SNR: $\left(\frac{S}{N}\right)_o = \frac{k_p^2 A_c^2 S_X}{2\eta B} = k_p^2 S_X \gamma$, wobei γ Eingangs-SNR im Basisband ist

2.4.3 $(S/N)_o$ in FM Seite 211

$$\begin{split} \mathbf{Ausgangs-Signal-Leistung:} \ S_o &= E[k_f^2 X^2(t)] = k_f^2 E[X^2(t)] = k_f^2 S_X \\ \mathbf{Ausgangs-Rausch-Leistung:} \ N_o &= E[\frac{1}{A_c^2}(n_s'(t))^2] = \frac{1}{A_c^2} E[(n_s'(t))^2] = \frac{3\eta W^3}{3A_c^2 2\pi} \\ \mathbf{Ausgangs-SNR:} \ \left(\frac{S}{N}\right)_o &= \frac{3A_c^2 2\pi k_f^2 S_X}{2\eta W^3} = 3\left(\frac{k_f^2 S_X}{W^2}\right)\gamma = 3D^2 S_X \cdot \gamma = \frac{3D^2 A_c^2 Sx}{2\eta B} \quad \text{,wobei } \gamma \text{ Eingangs-SNR} \\ &\text{im Basishand ist.} \end{split}$$

im Basisband ist

2.4.4 Schwellwert Effekt für $(S/N) \ll 1$ Seite 211

Phase: $\theta(t) \approx = \phi_n(t) + \frac{A_c}{v_n(t)} \sin(\phi(t) - \phi_n(t))$

- Phase wird dominiert von $\phi_n(t)$
- Nutzsingal $\phi(t)$ ist in unkenntlicher Form innerhalb von θ vorhanden

3 Leistungen Tabelle

4 Opimaler Detektor Seite 226

Rauschen führt zu Bitfehlern.

- Wir führen ein Qualitätsmass für die Minimale Bitfehlerrate P_e bei maximaler Übertragungsrate in einem Digitalen Übertragungssystem ein.

- Grosses Rauschen (kleine SNR) kann zu einer fehlerhaften Detektion der gesendeten Symbole führen.

- Der Empfänger soll so optimiert werden, dass er für den vorgegebenen digitalen Datenstrom die Bitfehlerrate P_e minimiert (= optimaler Detektor) **Vorraussetzungen**

Gauss'scher Kanal:

- Verzerrungsfrei (ohne lineare / nicht-lineare Verzerrungen) - Verzerrungsfrei = keine Intersymbol Interferenz (ISI) - Mittelwertfreies additives weisses gauss'sches Rauschen

Lineares Filter: Maximierung der SNR zu den optimalen Abtastzeitpunkten n T

Detektor: Entscheidung, welches Symbol gesendet wurde (soft/hard)

4.1 Binäres Übertragungssystem Seite 226

Zwei mögliche Eingangssignale: $s_i(t) = \begin{cases} s_1(t) & 0 \le t \le T & \text{for } 1 \\ s_2(t) & 0 \le t \le T & \text{for } 0 \end{cases}$

Beispiele für $s_i(t)$: NRZ, Manchester, ASK, FSK etc.

Empfänger Eingangs-Signal: $r(t) = s_i(t) + n(t)$ i = 1, 2 $0 \le t \le T$ wobei n(t): zero mean AWGN(Additive White Gaussian Noise)

Aufbereitung Block1: Empfangssignal r(t) wird mit linearem Filter aufbereitet:

- Ziel: viel Signalanteil aber nur wenig Rauschen (SNR soll maximalsein) (Filtern)

- Möglichkeiten: 1. Matched Filter 2. Korrelation

Abtastblock Block2: Das Kontinuierliche Signal wird Diskretisiert und der Detektor enscheidet durch eine Schätzung, welches Signal gesendet wurde.

Hypothese $H_1(\text{falls } z(nT) > \lambda) \Rightarrow S1$ wurde gesendet Hypothese $H_2(\text{falls } z(nT) < \lambda) \Rightarrow S2$ wurde gesendet

Hard-Decision: Es wird eine feste Entscheidung ("0" oder "1")

Soft-Decision: Es wird eine Wahrscheindlichkeit für "0" oder "1" bestimmt und verarbeitet

4.2 Fehler-Wahrscheindlichkeit und maximum Likelihood Detector Seite 227

4.2.1 Bitfehler-Wahrscheindlichkeit Seite 227

Im Binären fall mit Hard-decision können zwei Fehler fälle auftreten: Es wird S1 empfangen obschohn S2 geschickt wurde und umgekehrt.

dies ergibt folgende Fehlerwahrscheindlichkeit: $P_e = P(H_2|s_1) \cdot P(s_1) + P(H_1|s_2) \cdot P(s_2)$

4.2.2 Maximum Likelihood Detector Seite 227

Vorraussetzungen Bedingte Wahrscheindlichkeiten $f(z|s_1)$ und $f(z|s_2)$ Der Detektor entscheidet wie Folgt: HypotheseH1: falls $f(z|s_1) \cdot P(s_1) > f(z|s_2) \cdot P(s_2)$ HypotheseH2: falls $f(z|s_1) \cdot P(s_1) < f(z|s_2) \cdot P(s_2)$ Oder ausgedrückt mit WSK-Verhältnis (Likelihood ratio) $\Lambda(z)$: H_1 : falls $\Lambda(z) = \frac{f(z|s_1)}{f(z|s_2)} > \frac{P(s_2)}{P(s_1)}$ H_2 : falls $\Lambda(z) = \frac{f(z|s_1)}{f(z|s_2)} < \frac{P(s_2)}{P(s_1)}$

-9-

	Baseband	DSB-SC	AM Coherent	AM Envelope	\mathbf{PM}	FM
Nachrichtensignal		Zufallsproze	ss $X(t)$ mit $ X(t) $	≤ 1 bzw. $ x_{\lambda}(t) \leq$	1 für alle λ des Ergebr	iisraums S
Leistung S_X von $X(t)$			$S_X = S_X(t)$	$= E\left[X^2(t)\right] \le 1, \ ($	weil $ X(t) \leq 1$)	
Bandbreite von $X(t)$				В		
Eingangsnutzsignal $X_i(t)$	X(t)	$X(t)A_c\cos(\omega_c t)$	$A_c(1+\mu X)$	$(t))\cos(\omega_c t)$	$A_c \cos(\omega_c t + k_p X(t))$	$A_c \cos(\omega_c t + k_f \int_{-\infty}^t X(\tau) \ d\tau)$
Leistung S_i von $X_i(t)$	S_X	$rac{1}{2}A_c^2S_X$	$rac{1}{2}A_{c}^{2}(1+$	$\mu^2 S_X)$	$rac{1}{2}A_c^2$	$rac{1}{2}A_c^2$
Bandbreite von $X_i(t)$	В	2B	21	8	2(D+1)B	2(D+1)B
Rauschleistung am Eingang	ηB	$2\eta B$	2η	В	$2(D+1)\eta B$	$2(D+1)\eta B$
SNR am Eingang $\left(\frac{S}{N}\right)_i$	$\frac{S_i}{\eta B}$	$\frac{\frac{1}{2}A_c^2S_X}{2\eta B}$	$\frac{\frac{1}{2}A_c^2(1+}{2\eta}$	$\frac{\mu^2 S_X)}{B}$	$rac{rac{1}{2}A_c^2}{2(D+1)\eta B}$	$\frac{\frac{1}{2}A_c^2}{2(D+1)\eta B}$
Ausgangsnutzsignal $X_o(t)$	X(t)	$A_c X(t)$	$A_c \mu \lambda$	$\chi(t)$	$k_p X(t)$	$k_f X(t)$
Leistung S_o von $X_o(t)$	S_X	$A_c^2 S_X$	$A_c^2\mu^2$	S_X	$k_p^2 S_X$	$k_f^2 S_X$
Rauschleistung am Ausgang	ηB	$2\eta B$	2η	B	$rac{1}{A_c^2/2}\eta B$	$rac{1}{3}rac{(2\pi B)^2}{A_c^2/2}\eta B$
SNR am Ausgang $\left(\frac{S}{N}\right)_o$	$\frac{S_i}{\eta B}$	$\frac{A_c^2 S_X}{2\eta B}$	$\frac{A_c^2 \mu^2}{2\eta}$	$\frac{S_X}{B}$	$\frac{k_p^2 A_c^2 S_X}{2\eta B}$	$rac{3D^2A_c^2S_X}{2\eta B}$
$\left(\frac{S}{N}\right)_o$ ausgedrückt mit $\gamma = \frac{S_i}{\eta B}$	λ	λ	$\frac{\mu^2 S}{1+\mu^2}$	$\frac{x}{S_X}\gamma$	$k_p^2 S_X \gamma$	$3D^2 S_X \gamma$
Modulationsindex: $\mu = \overline{\mathbf{n}} $	$\frac{\min(m(t)) }{A_m}$	Mittlere Rauschleist	ung $\eta = 4 \cdot k \cdot T$	Phasen-Hubkonsta	nte: $D = \frac{\Delta f}{B_m} = \frac{\Delta \omega}{\omega_m} =$	max. Frequenzhub Bandbreite von $m(t)$
		$k = 1, 38 \cdot 10$	$0^{-23} \frac{W_s}{K}$			
Seite 47		Seite 2	04		Seite 72	

4.2.3 Fehler-Wahrscheindlichkeit mit Gauss'schem Rauschen Seite 228

Ein gaussverteilter Zufallsprozess bleibt nach einem LTI-System gaussverteilt, womit für die WSK-Dichte von n_o gilt: $f_{n_o}(\xi) = \frac{1}{\sqrt{2\pi\sigma_{n_o}}} e^{\frac{-\xi^2}{2\sigma_{n_o}^2}}$ Für z ergeben sich zwei (überlappende) Gaussverteilungen (Bild 9-2 Seite 228)) Falls $P(s_1) = P(s_2) = 0.5$ dann ist $\lambda_o = \frac{(a_1 + a_2)}{2}$ und folglich $P_e = Q\left(\frac{a_1 - a_2}{2\sigma_{n_o}}\right)$ (Tabelle Seite 326)

4.3 Optimum Detection Seite 229

Mehr Info über Block1 von Seite 227.

4.3.1 The Matched Filter Seite 229

Das lineare Filter $H(\omega)$ soll die Fehler-WSK zum Zeitpunkt T
 minimieren: Maximieren von $(a_1 - a_2)$ bei gleichzeitiger Minimierung von n_o :

$$\begin{split} a(T) &= \frac{1}{2\pi} \int_{-\infty}^{+\infty} H(\omega) S(\omega) e^{j\omega T} d\omega \\ N_o &= E[n_o^2(T)] = \frac{\eta}{2 \cdot 2\pi} \int_{-\infty}^{+\infty} |H(\omega)|^2 d\omega \\ \left(\frac{S}{N}\right)_o &= \frac{a^2(T)}{N_o} = \frac{\left(\frac{1}{2\pi}\right)^2 |\int_{-\infty}^{\infty} H(\omega) S(\omega) e^{j\omega T} d\omega|^2}{\left(\frac{\eta}{2 \cdot 2\pi}\right)^2 \int_{-\infty}^{\infty} |H(\omega)|^2 d\omega} \\ \mathbf{Ausgangs-SNR:} \left(\frac{S}{N}\right)_o &\leq \frac{2}{\eta} \frac{1}{2\pi} \int_{-\infty}^{\infty} |S(\omega)|^2 d\omega = \frac{2E}{\eta} \Rightarrow \left(\frac{S}{N}\right)_{o_max} = \frac{2E}{\eta} \text{ Gemäss Cauchy-Schwarz ist} \\ SNR_o \text{ Maximals wenn } H(\omega) &= S^*(\omega) \cdot e^{-j\omega T} \\ \text{Dies führt zu einer Impulsantwort von: } h(t) &= \begin{cases} s(T-t) & \text{für } 0 \leq t \leq T \\ 0 & \text{ sonst} \end{cases} \end{split}$$

4.3.2 Correlator Seite 230

Eine Art des Matched Filters

Ausgang des Kausalen Filtes:

 $z(t) = \int_{0}^{t} r(\tau)s(T - (t - \tau)) d\tau \text{ für den Zeitpunkt } T \text{ gilt dann: } z(T) = \int_{0}^{T} r(\tau)s(\tau) d\tau$ Für Zeitpunkt T (und nur für T) kann also (anstatt des Matched Filters) r(t) mit s(t) korreliert werden.

4.3.3 Optimum Detection Seite 230

Um die Fehlerwahrscheindlichkeit P_e zu minimieren, muss ein lineares Filter gewählt werden, welches $\frac{(a_1 - a_2)^2}{\sigma_{n_o}^2}$ maximiert. Im binären Fall kann $\left(\frac{S}{N}\right)_o$ mit der korrelation des Differenzsignals $s_1(t) - s_2(t)$ optimiert werden. Die Korrelation auf das Differenzsignal kann maximal den Energieinhalt E_d des Differenzsignals $s_1(t) - s_2(t)$ annehmen: $E_d = \int_0^T [s_1(t) - s_2(t)]^2 dt$ Dies ergibt dann: $\left(\frac{S}{N}\right)_o = \frac{(a_1 - a_2)^2}{\sigma_{n_o}^2} = \frac{E_d}{\eta/2} = \frac{2E_d}{\eta}$ Dieser Ausdruck ist aber gerade das Quadrat des Arguments der Fehler-WSK des ML-Detektors. Eingesetzt ergibt dies: $P_e = Q(\frac{a_1 - a_2}{2\sigma_{n_o}}) = Q(\sqrt{\frac{E_d}{2\eta}})$

4.3.4 einige Beispiele von Fehler-WSK's P_e Seite 231

- Die Fehler-WSK P_e berechnet sich aus der Energie des Differenzsignals E_d , kann aber in einem zweiten Schritt auch mit der **mittleren Energie pro Bit** E_b ausgedrückt werden.

- Die Beispiele zeigen, dass durch Wahl einer geeignete Modulationsart oder der Linecodes (z.B. bipolar NRZ statt unipolar NRZ) die Bitfehlerrate P_e bei gleicher Signal- und Rauschleistung optimiert werden kann.

Unipolare Baisband Signale:

Fehler-WSK:
$$P_e = Q\left(\sqrt{\frac{A^2T}{2\eta}}\right) = Q\left(\sqrt{\frac{E_b}{\eta}}\right)$$
 Mittlere-Bit-Leistung: $E_b = \frac{A^2T}{2}$

Bipolare Baisband Signale:

Fehler-WSK:
$$P_e = Q\left(\sqrt{\frac{2A^2T}{\eta}}\right) = Q\left(\sqrt{\frac{2E_b}{\eta}}\right)$$
 Mittlere-Bit-Leistung: $E_b = A^2T$

ASK:

Fehler-WSK:
$$P_e = Q\left(\sqrt{\frac{A^2T}{4\eta}}\right) = Q\left(\sqrt{\frac{E_b}{\eta}}\right)$$
 Mittlere-Bit-Leistung: $E_b = \frac{A^2T}{4}$

PSK:

F

ehler-WSK:
$$P_e = Q\left(\sqrt{\frac{A^2T}{\eta}}\right) = Q\left(\sqrt{\frac{2E_b}{\eta}}\right)$$
 Mittlere-Bit-Leistung: $E_b = \frac{A^2T}{2}$

FSK:

Fehler-WSK:
$$P_e \approx Q\left(\sqrt{\frac{A^2T}{2\eta}}\right) = Q\left(\sqrt{\frac{E_b}{\eta}}\right)$$
 Mittlere-Bit-Leistung: $E_b = \frac{A^2T}{2}$

5 Infromationstheorie und Quellenkodierung Seite 245

5.1 Information Content of a Symbol Seite 246

DMS: discrete memoryless source (neues Symbol ist undabhängig von vorhergehenden Symbolen)

DMC: discrete meroryless channel (Ausgang Y_i ist nur abhängig von x_i und nicht von x_k $(k \neq i)$) Informationsgehalt $I(x_i)$ eines Symbols x_i : $I(x_i) = -log_2 P(x_i)[b]$

Eigenschaften:

$$\begin{split} &I(x_i) \geq 0 \\ &I(x_i) > I(x_k) \quad \text{falls } P(x_i) < P(x_k) \\ &I(x_i x_k) = I(x_i) + I(x_k) \quad \text{falls } x_i \text{ und } x_k \text{unabhängig sind} \end{split}$$

5.2 Entropie (Mittlerer Informationsgehalt) Seite 246

Entropie: H(X) =Entropie des Alphabets X einer Quelle: $H(X) = E[I(x_i)] = -\sum_i P(x_i) \cdot \log_2 P(x_i) [b/Symbol]$

Eigenschaften:

 $0 \leq H(X) \leq \log_2 m \quad m:$ Grösse des Alphabets (Anzahl der Symbole)

 $0 \le H(X) \le 1$ für binäre Quelle

Irrelevanz: bedeutungslose Information

Redundanz: mehrfach vorhandene Information $R(X) = H_{max} - H(X) = log_2m - H(X)$

Bedingte Entropie:

- Bedingte Entropie H(Y|X): Informationsbedarf um (aus dem gegebenem X) Y zu bestimmen.
- Bedingte Entropie H(X|Y): Informationsbedarf um (aus dem beobachtetem Y) X zu bestimmen.
- Verbund-Entropie H(X, Y): Information des gesamten Kommunikationskanals.
- Eigenschaften: H(X,Y) = H(X|Y) + H(Y) bzw. H(X,Y) = H(Y|X) + H(X)

Symbol rate: r[Symbol e/s]

Informationsrate: $R = r \cdot H(X)$ $(R \neq R(X))$

Durch Maximierung von H(X) kann bei vorgegebener Symbol
rate r die Informationsrate R optimiert werden.

Maximierung von H(X) ist Aufgabe der Quellencodierung

Gegenseitige (mutual) Information: Information, welche vom Ein- zum Ausgang transferiert wird. I(X;Y) = H(X) - H(X|Y)

Eigenschaften: I(X;Y) = H(X) - H(X|Y) = H(Y) - H(Y|X) = I(Y;X) I(X;Y) = H(X) + H(Y) - H(X,Y)

5.3 Diskreter gedächnisloser Kanal Seite 247

$$\begin{aligned} \mathbf{Kanalmatrix:} \ [P(Y|X)] &= \begin{bmatrix} P(y_1|x_1) & P(y_2|x_1) & \dots & P(y_n|x_1) \\ P(y_1|x_2) & P(y_2|x_2) & \dots & P(y_n|x_2) \\ \dots & \dots & \dots & \dots \\ P(y_1|x_m) & P(y_2|x_m) & \dots & P(y_n|x_m) \end{bmatrix} & \text{dabei gilt:} \ [P(Y)] &= [P(X)][P(Y|X)] \end{aligned}$$

$$\begin{aligned} \mathbf{Verbundmatrix:} \ [P(Y,X)] &= \begin{bmatrix} P(y_1,x_1) & P(y_2,x_1) & \dots & P(y_n,x_1) \\ P(y_1,x_2) & P(y_2,x_2) & \dots & P(y_n,x_2) \\ \dots & \dots & \dots & \dots \\ P(y_1,x_m) & P(y_2,x_m) & \dots & P(y_n,x_m) \end{bmatrix} \end{aligned}$$

wobei $P(y_1, x_1)$ die W'heit ist, von x_1 nach y_1 zu gelangen. Beachte die W'heit von $x_1!!!$

Beispiel: Eine diskrete gedächtnisfreie Quelle mit einem Alphabet von zwei Symbolen $x_0 = 0$ und $x_1 = 1$ sendet ein Nachrichtensignal mit einer Bitrate von 64 kBit/s über einen diskreten gedchtnisfreien Kanal. Das Symbol x_0 tritt bei der Quelle mit einer Wahrscheinlichkeit von $p_0 = 0.9$ auf. Unabhängig vom gesendeten Symbol tritt im Kanal eine Fehlerwahrscheinlichkeit von $p_e = 0.001$ auf.

Kanaldiagramm: Verbundsmatrix: $[P(Y, X)] = \begin{bmatrix} P(x_o) \cdot P(y_0, x_0) & P(x_0) \cdot P(y_1, x_0) \\ P(x_1) \cdot P(y_0, x_1) & P(x_1) \cdot P(y_1, x_1) \end{bmatrix} = \begin{bmatrix} 0.9 \cdot 0.999 & 0.9 \cdot 0.001 \\ 0.1 \cdot 0.001 & 0.1 \cdot 0.999 \end{bmatrix} = \begin{bmatrix} 0.8991 & 0.0009 \\ 0.0001 & 0.0999 \end{bmatrix}$

5.4 Kanalkapazität Seite 251

Kanalkapazität pro Symbol C_s : $C_s = maxI(X;Y)$ [b/symbol]

Kanalkapazität pro Sekunde C: $C = r \cdot C_s$ [b/s]

Mögliche Übertragung: es ist möglich, die Information der Quelle zu Übertragen falls gilt: $H(X) < C_s \quad H(X) \cdot r < C$

0

0

1

$$\begin{split} & [P(Y|X)] = \begin{bmatrix} 0 & 0 & \frac{1}{3} \\ 0 & 0 & 0 \end{bmatrix} \\ & \text{gegenseitge Information:} \\ & I(X;Y) = H(X) \\ & \text{Kanalkapazität:} \\ & C_s = \log_2 m \\ & \text{Kanaldiagramm:} \end{split}$$

Rauschfreier Kanal

$$\begin{split} \text{Kanalmatrix:} & \begin{bmatrix} 1 & 0 & 0 & \dots & 0 \\ 0 & 1 & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 \end{bmatrix} \\ \text{immer Einheitsmatrix da } m = n \\ \text{gegenseitige Information:} \\ I(X;Y) = H(X) = H(Y) \\ \text{Kanalkapazität:} \\ C_s = \log_2 m = \log_2 n \\ \text{Kanaldiagramm:} \end{split}$$

Deterministischer Kanal

Kanalmatrix:								
	[1	0	0					
	1	0	0					
[P(Y X)] =	0	1	0					
	0	1	0					
	0	0	1					
gegenseitige l	Info	\mathbf{rm}	ation					
I(X;Y) = H(Y)								
Kanalkapazität:								
$C_s = \log_2 n$								
Kanaldiagran	nm	:						
X. 👞								
·								
x, •1→	\geq	\geq	y,					

AWGN-Kanal Seite 253: Kanalausgang: Y = X + nKanalkapazität C_s : $C_s = \frac{1}{2} \log_2 \left(1 + \frac{S}{N}\right)$ [b/sample] Kanalkapazität $C: C = 2BC_s = B \log_2 \left(1 + \frac{S}{N}\right)$ [b/s] 8-ung (S/N) in Leistung $\Rightarrow 10^{\frac{dB}{10}}$ Beispiel: (S/N) = 40 dB, B = 4kHz $\Rightarrow C = 4000 \cdot \log_2(1 + 10^{\frac{40}{10}})$

5.5 Quellenkodierung Seite 253

Der Quellencoder wandelt das Nachrichtensignal einer DMS in eine Symbolfolge mit möglichst kleiner Redundanz um.

- Beispiele für verlustfreie codierung: Zip-File, Morse-Code, Shannon-Fano, Huffmann

- Beispiele für verlustbehaftete codierung: JPEG, MP3

Durchschnittliche Code-Länge: $L = \sum_{i=1}^{m} P(x_i)n_i$ Code effizienz: $\eta = \frac{L_{min}}{L} = \frac{H(X)}{L}$ Code redundanz: $\gamma = 1 - \eta$

5.6 Klassifizierung von Codes Seite 254

Aufgeführt auf Seite 254 mit Tabelle.

- **Fixed Length Code 1,2:** Jedes Codewort hat gleiche Länge. BSP: ASCII-Code
- Variable Length Code 3,4,5,6: Codewörter können unterschiedliche Länge haben. BSP: Morse Code, Shannon-Fano, Huffman
- Prefix-Free Code 2,3,4,5,6: Kein Codewort ist Präfix (Vorsilbe) eines anderen Codeworts. BSP: Shannon-Fano / Huffman, nicht Morse
- Uniquely Decodable Code 2,4,6: Eine Kette von Codewörtern kann eindeutig wieder in die ursprüngliche Symbolfolge zurückgewandelt werden. Jeder präfixfreie Code ist zugleich eindeutig decodierbar. Nicht präfixfreie Codes sind eindeutig decodierbar, wenn durch die Codesequenzen nachfolgender Codewörter die Decodierung wieder eindeutig wird.
- **Instantaneous Code:** Jeder eindeutig decodierbare Code, welcher nach dem Empfang jedes einzelnen Codeworts sofort ein eindeutiges Symbol liefert, ohne dass nachfolgende Symbole decodiert werden müssen. Jeder Präfixfreie Code ist ein Instantaneous Code. Der nicht präfixfreie Morse Code wird Dank der kurzen Pause zwischen den Codeworten ebenfalls zu einem Instantaneous Code.
- **Optimal Code:** Jeder Instantaneous Code, welcher eine minimale Codelänge besitzt ist ein optimaler Code. Die minimale Codelänge ist dann erreicht, wenn die mittlere Codelänge L gerade der Entropie der Quelle H(X) entspricht, d.h. wenn die Effizienz $\eta = 100\%$ beträgt. Es gilt $L = \sum_{i} P(x_i) \cdot n_i \ge H(X)$ und $\eta = \frac{H(X)}{L}$

5.7 Kraft'sche Ungleichung Seite 255

- **Gegeben:** ein Quelle mit Alphabet x_i (i = 1...n)Jedem Symbol x_i wird zwar noch kein binäres Codewort aber eine Codelänge n_i zugewiesen.
- **Kraft'sche Ungleichung:** Die Kraft'sche Ungleichung besagt, dass ein eindeutig und sofort decodierbarer binärer Code gefunden werden kann wenn $K \leq 1$ gilt für $K = \sum_{i} 2 n_i$
- **Anmerkungen:** Die Ungleichung hilft nicht zum Auffinden dieses Coedes. Sie macht auch keine Aussage, ob irgendein vorliegender Code eindeutig decodierbar ist.

5.8 Shannon-Fano Codierung Seite 255/256

- 1. Symbole mit absteigender WSK anordnen
- 2. Mit Trennung 2 Teilmengen möglichst gleicher WSK bilden
- 3. Oberer Teilmenge 0, unterer Teilmenge 1 zuordnen
- 4. Teilmengen weiter unterteilen gemäss Schritt (2)

5.9 Huffman Codierung Seite 255

- 1. Symbole (bzw. -gruppen) mit absteigender WSK anordnen
- 2. Unterste zwei Symbole als Symbolgruppe zusammenfassen (Reduktionsschritt)
- 3. Weiter bei (1) bis nur noch zwei Symbolgruppen vorliegen
- 4. Der Symbolgruppe mit grösserer WSK 0, der andern 1 zuordnen
- 5. Letzten Reduktionsschritt rückgängig machen
- 6. Weiter bei (4) bis für alle Einzelsymbole ein Codewort vorliegt

6 Error Control Coding Seite 282

Durch das beifügen von geeigneter Redundanz wird es möglich Fehler zu erkennen und zu korrigieren.

6.1 Shannon: Kanalvodierungstheorem Seite 282

Gegeben:

- DMS mit Entropie H(X)[b/Symbol]

- DMC mit Kanalkapazität $C_s[b/Symbol]$

Theorem:

- Falls $H(X) < C_s$ kann mit ge
eigneter Kanalcodierung die Fehlerrate der Übertragung beliebig klein gemacht werden.

- Falls $H(X) > C_s$ ist fehlerfreie Übertragung nicht möglich.

Anmerkung: Bitfehler in der Übertragung verunmöglichen nicht etwa einen zuverlässigen Informationsaustausch sondern beschränken in der Praxis die nutzbare Übertragungsrate.

6.2 Blockcodes Seite 283

Codierung von (relativ kleinen) Datenblöcken. Aus
 k Eingangs- werden n Ausgangs
symbole generiert. Untergruppen sind: -lineare Blockcodes – zyklische Blockcodes

(n,k) – Code: generiert aus k Eingangs- n Ausgangssymbole wobei (n > k). Eingangsdatenstrom wird in Blöcke der Länge k unterteilt (jeder Block wird separat codiert).

Coderate R_c : Verhältnis zwischen Daten- und Übertragungssymbolen. $R_c = \frac{k}{n}$

6.3 Linearer Blockcode Seite 283

Gegeben sind die Code-Worte $a = (a_1, a_2, a_3, \ldots, a_n)$ und $b = (b_1, b_2, b_3, \ldots, b_n)$ aus C. Ein Code ist linear, wenn für $c = a \oplus b \in C$ gilt.

Merke: da $a \oplus a = (0, 0, 0, \dots, 0)$ gehört auch der Nullvektor zu jedem linearen Code.

6.3.1 Systematischer Code (Seite 310 (290))

Ein Block-Code ist systematisch, falls: beim Linearen (n, k) - Code, mit k Datenbits (d_i) und n Codebits (c_j) , sämtliche Datenbits (d_j) unmodifiziert an irgendwelchen Stellen c_j vorkommen. Normalerweise ist ein systematischer Code wie folg aufgebaut: zuserst alle Datenbits: $c_i = d_i$ für $1 \le i \le k$ dann folgen die Paritybits: $c_{j+k} = p_j$ für $1 \le j \le n-k$

6.3.2 Hamming-Gewicht, Hamming-Distanz Seite 283

Hamming-Gewicht w(c): w(c) = Anzahl Einer des Codewortes c.

Hamming-Distanz d(a,b): d(a,b) = Anzahl unterschiedliche Stellen der beiden Codeworte a, b

Beziehungen: w(c) = d(c, 0) $d(a, b) = w(a \oplus b)$

6.3.3 Minimale Hamming-Distanz Siete 284

Die minimale Hamming Distanz eines Codes C
 entspricht dem Minimum der Distanz aller möglichen Codewort-Paar
e a_i, b_k

Die minimale Hamming Distanz eines **linearen** Codes C entspricht also dem kleinsten Gewicht alle Codeworte von C. Je grösser die minimale Distanz ist, desto mehr Stellen müssen verändert werden, um a_i in b_k umzuwandeln.

Minimale Hamming Distanz: $d_{min} = min[d(a, b)]$

Bei linearen Codes $d_{min} = min[d(a, b)] = min[w(a \oplus b)] = min[w(c)]$

6.3.4 Fehler erkennung und korrektur Seie 284

Die minimale Hamming-Distanz bestimmt die maximale Anzahl erkennbare oder sogar korrigierbare Symbolfehler.

Detektierbare Fehler: $t_d = d_{min} - 1$

Korrigierbare Fehler: $t_c = \frac{1}{2}(d_{min} - 1)$

6.3.5 Generatormatrix G Seite 285

Die Generatormatrix G beschreibt einen linearen Blockcode:

Gegeben: Code-vector $c = [c_1, c_2, ..., c_n]$ und Daten-vector $d = [d_1, d_2, ..., d_k]$ Wir haben ein Systematischer-Code vorliegen. Somit erhalten wir (m = n - k):

$$c_{1} = d_{1}$$

$$c_{2} = d_{2}$$

$$\vdots$$

$$c_{k+1} = p_{11}d_{1} \oplus p_{12}d_{2} \oplus \ldots \oplus p_{1k}d_{k}$$

$$c_{k+2} = p_{21}d_{1} \oplus p_{22}d_{2} \oplus \ldots \oplus p_{2k}d_{k}$$

$$\vdots$$

$$c_{k+m} = p_{m1}d_{1} \oplus p_{m2}d_{2} \oplus \ldots \oplus p_{mk}d_{k}$$

$$c_{k+m} = p_{m1}d_{1} \oplus p_{m2}d_{2} \oplus \ldots \oplus p_{mk}d_{k}$$

$$i = c = dG = [d_{1} d_{2} d_{3} d_{4} \cdots d_{k}] \begin{bmatrix} 1 & 0 & \cdots & 0 & p_{11} & p_{21} & \cdots & p_{m1} \\ 0 & 1 & \cdots & 0 & p_{12} & p_{22} & \cdots & p_{m2} \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & 1 & p_{1k} & p_{2k} & \cdots & p_{mk} \end{bmatrix}$$

mit $\boldsymbol{G} = [\boldsymbol{I}_k \boldsymbol{P}^T]$ wobei \boldsymbol{I}_k die k'te Einheitsmatrix und \boldsymbol{P}^T die transponierte Paritätsmatrix ist.

Paritätsmatrix: $P = \begin{bmatrix} p_{11} & p_{12} & \cdots & p_{1k} \\ p_{21} & p_{22} & \cdots & p_{2k} \\ \cdots & \cdots & \cdots & \cdots \\ p_{m1} & p_{m2} & \cdots & p_{mk} \end{bmatrix}$

Paritätsprüfmatrix H Seite 285: Mit der Paritätsprüfmatrix H erkennt man Übertragungsfehler:

-
$$H = [P I_m]$$
 P :Paritätsmatrix, $H : [m \times n]$ Matrix mit $m = n - k$
- Reihen von H sind ubabhängig
- $H^T = \begin{bmatrix} P^T \\ I_m \end{bmatrix}$
- $G \cdot H^T = [I_k P^T] \cdot \begin{bmatrix} P^T \\ I_m \end{bmatrix} = P^T \oplus P^T = 0 = [k \times m]$ -Nullmatrix
- $c \cdot H^T = d \cdot G \cdot H^T = 0 = [1 \times m]$ -Nullvektor

Paritätsprüfmatix H^T und Hamming-Distanz d_{min} :

Jedes gültige Codewort cmultipliziert mit der transponierten Paritätsprüfmatrix H^T ergibt Null. $c\cdot H^T=0$

Merke: die minimale Hamming-Distanz d_{min} von C entspricht somit der minimalen Anzahl Zeilen von H^T , welche linear kombiniert Null ergeben.

6.3.6 Auswertung des Fehlersyndroms Seite 286

Das Fehlersyndrom serlaubt die Erkennung und evtl. Korrektur von Übertragungsfehlern e. Wobei: - $c_r:$ Empfangenes Codewort der Längen

- $e{:}$ Error-Pattern der Längen - $c_r=c\oplus e$

Syndrom $s = c_r \cdot H^T = (c \oplus e) \cdot H^T = c \cdot H^T \oplus e \cdot H^T = e \cdot H^T$

Bei einem Einzelfehler entspricht das Fehlersyndrom s gerade einer Zeile von H^T .

Sind alle Zeilen von H^T unterschiedlich, entspricht dies $d_{min} \ge 3$. Zugleich kann bei Einzelfehlern aus s das Fehlerbit ei eindeutig bestimmt und das empfangene Codewort c_r korrigiert werden.

6.3.7 Hamming Schranke Seite 285

Ein linearer (n, k)-Blockcode kann bis zu t Fehler korrigieren, falls n und k folgende Hamming-Schranke erfüllen: $n = k \sum_{i=1}^{t} \binom{n}{i} \sum_{i=1}^{t} \binom{n}{i!}$

 $2^{n-k} \ge \sum_{i=0}^{t} \binom{n}{i} = \sum_{i=0}^{t} \frac{n!}{(n-1)!i!}$

- Diese Bedingung ist notwendig aber nicht hinreichend. (Massgebend sind die Linearität und die Hamming-Distanz d_{min})

- Gilt das Gleichheitszeichen, handelt es sich um einen so genannten perfekten Code.

- Einzelfehler korrigierende perfekte Codes nennt man Hamming-Codes.

6.4 Zyklische Blockcode Seite 286

Zyklische Blockcodes sind eine Untergruppe des linearen Blockcodes. Beim Zyklischen Blockcode ist jede zyklische Verschiebung eines Codewots $c_1 \ (\in C)$ nach c_2 auch wieder ein gültiges Codewort von C.

Gegeben: Codewort $c = (c_0, c_1, c_2, c_3, \dots, c_{n-1})$ mit $c \in C$

Zyklische Verschiebung: $\sigma(c) = c^{(1)} = (c_{n-1}, c_0, c_1, c_2, c_3, \dots, c_{n-2})$ eine 2 Verschiebung ergäbe: $\sigma^2(c) = \sigma\{\sigma(c)\} = c^{(2)} = (c_{n-2}, c_{n-1}, c_0, c_1, c_2, c_3, \dots, c_{n-3})$

8-Ung: Eine Verschiebung um n ist gleich keiner Schiebung. $\sigma^n(c) = c$

Polynomschreibweise: Codewort $c = (c_0, c_1, c_2, c_3, \dots, c_{n-1})$ Zugehöriges Polynom: $c(x) = c_0 + c_1 x + c_2 x^2 + c_3 x^3 + \dots + c_{n-1} x^{n-1}$

- Beispiel: $c = (1, 0, 0, 1, 1, 0) \Rightarrow c(x) = 1 + x^3 + x^4$

- Im binären Fall sind Addition und Subtraktion identische Operatoren: $x^k + x^k = 0$, $x^k x^k = 0$
- Division: wir haben $f(x) = q(x) \cdot h(x) + r(x)$, h(x) ist ein Faktor von f(x), falls der Rest r(x) = 0
- Weisen zwei Polynome a(x) und b(x) bei der Division den gleichen Rest r(x) auf, so wird dies wiefolg dargestellt: $a(x) = b(x) \pmod{mod h(x)}$
- Somit gilt für den Rest: $r(x) = f(x) \pmod{h(x)}$

6.4.1 Fundamentales Theorem für zyklische Codes Seite 287

alle Codewortpolynome eines (n, k) zyklischen Codes sind vielfache des Generatorpolynoms: $(x) = g_o + g_1 x + g_2 x^2 + g_3 x^3 + \ldots + g_{n-k} x^{n-k}$

Mit g(x) ein Faktorpolynom von $(x^n + 1)$, d.h. $(x^n + 1) = q(x) \cdot g(x)$ (Beiweis Schaum Seite 288 Formel 11.27) Damit im (n, k)-Code alle Bits codiert sind, muss gelten: $g_0 = 1$ sowie $g_{n-k} = 1$ Beispiel: Zyklischer (7, 4)-Blockcode

 $(x^7 + 1) = w\ddot{a}hlen(x + 1) \cdot (...) \Rightarrow (x^7 + 1)/(x + 1) = x^6 + x^5 + ... + x + 1$

 $\Rightarrow (x^7 + 1) = (x + 1)(x^3 + x + 1)(X^3 + x^2 + 1)$ Da wir einen (7,4)-Code haben benötigen wir ein Polynom (k - 1) = 4 - 1 = 3ten Grades. Wir wählen $(x^3 + x + 1)$ und multiplizieren mit den lin.unabh. Codeworten d_i $\begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 \end{bmatrix} z_1$

$$\Rightarrow G = \begin{bmatrix} 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 \\ z_4 \end{bmatrix}$$

Zuletzt möchten wir dies noch als Systematische-Codematrix darstellen.

	1	0	0	0	1	1	0	$z_1\oplus z_2\oplus z_3$
$\rightarrow C$ –	0	1	0	0	0	1	1	$z_2\oplus z_3\oplus z_4$
$\Rightarrow G =$	0	0	1	0	1	1	1	$z_3\oplus z_4$
	0	0	0	1	1	0	1	z_4